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A B S T R A C T  

We prove a structure theorem for locally finite connected graphs X with in- 
finitely many ends admitting a non-compact group of automorphisms which 
is transitive in its action on the space of ends, fix- For such a graph X, 
there is a uniquely determined biregular tree T (with both valencies finite), 
a continuous representation ~o ." Aut(X) --+ Aut(T) with compact kernel, 
an equivariant homeomorphism ~ : f ix "-4 f i r ,  and an equivariant map 
1" : Vert(X) --+ Vert(T) with finite fibers. Boundary-transitive trees are 
described, and some methods of constructing boundary-transitive graphs are 
discussed, as well as some examples. 

I n t r o d u c t i o n  

Experience shows tha t  it is usually difficult to analyze the simple random walk 

on a graph X and the spectral  theory of its associated averaging opera tor  P x  

acting in 12(X) without  some symmet ry  assumptions on the graph. In the case 

of graphs arising as Bruhat  - Tits buildings of p-adic Lie groups of split rank one, 

namely biregular trees, the group of automorphisms of X acts transitively on the 

boundary  of X (the space of ends) and this fact plays a crucial role in solving 

both  problems. Locally finite graphs with infinitely many  ends are a na tura l  

generalization of trees, and it is natural  to adopt the symmet ry  assumptions 

that  the group G = Aut (X)  of graph automorphisms of X is non-compact  (in 

the compact-open topology), and in view of the previous remark,  that  G acts 

transitively on the space of ends f ix .  Such graphs we call boundary- t ransi t ive  

Received May 29, 1991 



2 A. NEVO let. J. Math. 

graphs. It is natural to call their automorphism groups totally disconnected 

topological groups of rank one, and we will consider these groups, the harmonic 

analysis and the random walk on the graph elsewhere. Here we consider the 

problems of describing the structure of such graphs and constructing examples. 

As to the first problem, we prove the following structure theorem: given X, 

there exists a uniquely determined hi-regular tree T, with both valencies finite, 

a continuous representation ~o : Aut(X) --* Aut(T), a homeomorphism A : f ix --* 
fl T which is equivariant with respect to @, and a map • : V ( X )  ~ V ( T )  from 

the vertices of X to the vertices of T which is again equivariant with respect to 

~, and has finite fibers. @(G) has either one or two orbits of vertices in 2", and 

therefore by equivariance the set of fibers falls into either one or two ~o(G)-orbits. 

The maps ~ and A are compatible in the sense that xn 6 X and zn "--' w 6 f i x  

implies ~(zn) --* A(07). Concerning the second problem, we describe several ways 

in which boundary-transitive graphs can be modified to yield other boundary- 

transitive graphs, for example, appropriately appending a finite graph, adding 

edges connecting vertices at a fixed distance, taking the dual of the graph, and 

also describe some examples arising naturally as the 1-skeleton of universal covers 

of 2-dimensional simplicial complexes with a finitely generated free fundamental 

group. Also, we show that boundary-transitive trees are subdivisions of biregular 

trees, and that a free product of two finite graphs is boundary-transitive iff both 

graphs are complete on their vertices. 

The construction of a tree T and a representation ~o : Aut(X) --* Aut(T) is a 

fundamental result in the theory of graphs with infinitely many ends and is due 

to M. J. Dunwoody (see [2]). We show that ~o is continuous and that in our case 

T is locally finite. In the construction of the boundary map A : f ix -* f i t  we 

use some arguments of Woess (see [5]). 

1. Let X = (V, E) be a locally finite graph, with vertex set V and a set of 

unoriented edges E, without loops or multiple edges. Denote by 6A the co- 

boundary of a set of vertices A C X, namely the set of edges having one vertex 

in A and one in X \ A  a= A*. Assume there exists a set of vertices D, with D and 

D* both infinite, such that 6D = 6D* is finite, in which case D will be called 

a cut. If [6D[(= the number of elements in 6D) is as small as possible subject 

only to D and D* being infinite, D will be called a narrow cut. 

The space of ends n of X is constructed as follows: given a finite subgraph 

F of X, X \ F decomposes to finitely many connected components, by the local 

finiteness of X, and denote the set of components by Or. The set {Cr[F  a finite 

subgraph of X} is directed w.r.t, set inclusion, and fix = N is defined as its 
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inverse limit. By construction, Q is a totally disconnected compact metrisable 

space, and X U f] becomes a compact totally disconnected metrisable space in 

which X is discrete open and dense and 8 X  = fL If we define two infinite paths 

in X to be equivalent iff for every finite subgr&ph F,  almost all (that is, all but 

finitely many) of their vertices belong to the same component of CF then there 

is a natural  identification of fl and the set of equivalence classes. 

We can now appeal to the following: 

THEOREM 1 ([2]): ff X has a cut, then X has a narrow cut D with She 

property that  for every graph-automorphism g E G a= Aut(X) at  least one of 

the following holds: 

D C gD, D c gD*, D* c gD, D* c gD*. 

The existence of such a cut has been utilized by Dunwoody to obtain an 

explicit construction of a tree T and an explicit representation ~o : G --+ Aut(T).  

We recall the details of the construction [1,2]: Define C = {gD, gD*lg ~ G} = 

the set of G-translates of the narrow cut D and its complement D*. £ has an 

involution ~' ~ A ~ A* E ~r, and set inclusion _C induces a partial order on e,  

such that  the system (£, _ ,  *) satisfies the following five properties of a partied 

order _< with an involution A ~-* A on a set 4: 

(1) 
(2) for no pair A, B do both A <_ B and ~] _ B hold; 

(3) for no pair A, B do both A _< B and A _ B hold; 

(4) for any pa~r A, B, at least one of the following holds: 

A_B, A<B, A_B, A_B; 

(5) ff A _< B, then there are only finitely many C's s.t. A _< C _< B. 

Obviously, (e,  C_, ,)  satisfies the first three properties, and it satisfies the fourth 
by Dunwoody's Theorem 1. The fifth property follows from the following: 

THzos u 2 ([4]): >_ O} de ending  q.ence ofn ow c.ts, 
and ~'_>0 Ci ~ ~ then there ex/sts n > 0 S.t. Cn = Cn+y V3" _> O. 

Given such a system define A < B iff A _< B and A ~ B, and A -< B iff A < B 

and there is no C s.t. A < C < B. The relation: A -~ B ~ A = B or A -< B, is 

am equivalence relation [1], and denoting by [A] the equivalence class of A, take 

V = 4 / , ~ =  ([ALIA E 4} to be a set of vertices of an oriented graph T, with 

edge set b(, by defining the source and target functions s amd t: ~( --* ,~ /~ ,=  V 
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of edges A E A with the formulas: s(A) = [A] t(A) = [A]. (V, #~, s, t) is an 

oriented tree: A ~-* (s(A),t(A)) is injective since A N B and ~ N D implies 

either A = B or A -< B -< A, the graph is connected by property (5} and has no 

cycles since _< is a partial  order. Moreover, two edges A, B in the tree can be 

joined by an oriented path  itf A _< B. More concretely, for the system (£, C_, ,)  

obtained from X, the tree can be described as follows: the relation A -< B means 

that  A C B but  there is no other C E £ s.t. A c C c B, in which case we will 
# # # 

call A s subset of index one in B, and the equivalence relation A N B means: 

either A = B or A is a subset of index one in B* = X \ B. Therefore, the edges 

of T (sets A E 6) whose target vertex is the source vertex of D E e are precisely 

the edges given by subsets Ai of index one in D, and the edges of T whose target 

vertex is the target vertex of D are precisely the edges given by subsets By of 

index one in D*, see Fig. 1. 

(DP 

P 

Fig. 1 

In this tree of inclusions, a directed path CIC2C3--" Cn going from S(Cx) to 

t ( c . )  according to the m o w s  corresponds to a chain of index-one (in.easing) 

inclusions C1 < C2 < "'" < C,, and an antidirected path C1C2C3"" C, going 

from t(C1) to s(Cn) against the arrows corresponds to the chain of index-one 

(decreasing) inclusions C1 > C~ > -. .  > C , .  We note that  since G = Aut(X)  

preserves the partial  ordering _ on £ and commutes with the involution *, the 

equivalence relation N is G-invariant, and so there is a natural  action of G on 

T by graph-automorphisms, and moreover, this action in T has either one or 

two orbits of edges V depending on whether G acts with or without inversions, 

which is determined by whether or not G has an involution cr satisfying a (D)  = 
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D*. It is clear tha t  the G action has either one or two orbits of vertices in 

T, again depending on the existence of an involution ~r as above. Denote the 

representation G --* Aut(T) by ~. 

PROPOSITION 1: @ is a continuous representation. 

Proo£: We take the compact - open topology on Aut(T), and clearly any increas- 

ing sequence An c T of finite sets with Un An = T defines a base / In  _< Aut(T) 

of neighbourhoods of the identity, where H,~ = {g E Aut(T)[ga = a ¥a ~ A~} 
since T is discrete in its natural  metric. 

Recall now the following result which follows easily from Theorems 1 and 2. 

LEMMA 3 ([1]): The s tabi l i zer  o f  a narrow cut  D E e conta/ns tfie stabillzer 

of  any edge e E ~ D. 

It follows that  ~ is continuous, since if gn --* I in Aut(X), gn fixes larger and 

larger finite sets of vertices and edges in X, so 9n fixes the narrow cuts which 

contain these edges in their boundary, and so ~(gn) fixes larger and larger finite 

sets of edges in T, so ~(gn) - "  I.  [] 

Fixing a reference vertex 0 G T, consider the space AT = the set of all infinite 

geodesics starting at 0. There is an associated metric d0(•,w') on AT, which 

assigns the value e - n  where n is the distance in T between 0 and the point from 

which the unique geodesics from 0 to w and w' diverge. Clearly, Aut(T) acts 

continuously on A : wn "* ~ and gn - "  I implies gnwn -4 w, and AT is compact 
iif each vertex has finitely many neighbours. 

2. Add now the following assumptions: 

(A) X has infinitely many ends, 

(B) G is non compact, 

(C) G is transitive on f~x. 

Then: 

PROPOSITION 2: (1) The tree T is a b/regular tree, wi~b at mast  2 ~nite 

valencies. 

(2) There exists an equ~rariant homeomorphism AI : fiT ---' f ix  (where G acts 

on f i t  via ~) .  

Proo[: STEP 1. We start by showing that  AT ~ ~. If G would have a finite 

orbit of vertices, then by local finiteness of X, G would be a profinite group 
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in a natural way, and so assumption B insures that  every orbit is infinite. If T 

is finite, then Aut(T) is finite and so G has a subgroup H of finite index which 

leaves an edge of T invariant. Then H leaves a narrow cut D ~nvariant, and 

therefore also its finite coboundary 6D. Therefore assumption (B) insures that  

T is infinite and AT' ~ ¢, as in [5, proof of Theorem 4.1]. 

STEP 2. Construct a boundary map Al : AT ~ ~ x  as follows: Fixing s(D) as 
a reference vertex, each end of T has a unique representation as an antidirected 

path of edges {Ai}~  0 starting at s(D), i.e. s(D) = t(Ao). 
Define: ~l({Ai}~0) = Ai=oA,OO -. where -4i means the closure in XUf2x. Ai=oA,°~ -. ~/ 

¢ by compactness, does not intersect X by Theorem 2, and At will be well de- 

fined if we show that  the intersection contains a unique point of f~x. Given 
CO - -  w' ~ w E Ai=o A, there exists a finite F C X s.t. w and w ~ belong to the closure 

of different components of X \ F.  Some Aio is disjoint from F by Theorem 2 

and being connected Aio is contained in the component of X \ F whose closure 

contains w, and w ~ ~ Aio. So A1 is well defined and clearly continuous: Let 

Ln = {v E Yld(v,~D) < n}, and let in = ]{C e £16CALn ¢ ¢)], and con- 

sider two geodesics {Ai}i=0, {B,}i=0 which have the first N edges in common. 
CO - -  O0 - -  If N > In then Ni=oAi and f'li=0B s are in the closure of the same component 

of X \ L,,. ~l is also injective, since given {Ai}~°=0, {Bi)~°__0 as above, consider 

the first vertex of T in which they diverge. Let t(Ai) = t(Bi), 0 < i < N, and 

t(AN+I) = s(AN) • s(BN) = t(BN+l). If t(AN) = t(BN) but s(AN) y£ s(BN), 
then by definition BN is a subset of index one in A~ so AN Iq BN = ¢; distinct 

subsets of index one of a set AN-1 E g are disjoint, and therefore ~l is injective. 

Also, ~l is equivariant: y~l({Ai}~=0 ) = )q(~(g){Ai}~=o), since ~(g) .  {Ai}~0 
A o~ oo -. oo ~i- is the end represented by {g i } i = 0  and Ni=ogA, = g CIi= 0 

STEP 3. G contains a compact subgroup having finitely many orbits on ~2x. 

Let K = Gv be the stabilizer in G of a vertex v E X. K is a compact open 

subgroup with R0 cosets in G. If  w E f~x then Gw = Ui°°=0 giKw = f~x and 
each giKw is compact, so by Baire's category theorem, at least one contains a 

non-empty open set, but then so does Kw and being homogeneous it is open, so 

each giKw is open, so there exists a finite covering 

N N N 
QX -" ,UlgiKw'= --- I=ILI giKgT~l giw = i=ILI Kglwi. 

Q = I-I~¢=tK g~ fl K is compact and of finite index in K and K g~, and clearly has 

finitely many orbits on ~2x. 
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Now io(K) c Aut(T) is compact, and has finitely many orbits in Ar since A~ 

is an equivariant injection AI : AT ~ fix. By construction T has st most two 

valencies, and since it admits a compact group of automorphisms with finitely 

many orbits, AT is compact, the valencies are both finite, Al(fiT) is a G invariant 

set in flx, so AI is onto and therefore an equivariant homeomorphism, where 

f i t  ----- AT is the space of ends. [] 

Denote A~ -I : fix --* f i t  by A. We note that the continuity of io implies that 

~o(G) is a closed subgroup of Aut(T), since it is a countable union of the cosets 

of ~o(K) which is compact. 

3. X has a biregular tree associated with it, and it is possible to describe 

the structure of X using that tree. We first collect some facts about biregular 

and boundary-transitive trees. Call a tree reduced if it has the property that 

geodesics can be continued indefinitely in both directions. We have: 

PROPOSITION 3: Let T be a boundary.transitive reduced tree, G c Aut (T) 

a closed non-compact boundary-transitive subgroup. Then: 

(a) G contains a non-trivial translation a/ong a geodesic, i.e. an automorphism 

g with rnindT(z, gz) • O. 

(b) For every vertex z E T with va/ency at /east  3, G= = Sto(x) is transitive on 

the boundary. 

(c) T is a subdivision of a biregular tree T~,m (i.e. T is obtained/tom T,~,,n by 
add/ng Aut(Tn,,n)-orbits d vertices of w/ency 2). 

(d) / f  [z, y] is a segment connecting two vertices of valency ~_ 3 at minimal 

distance then [z, y] intersect evez T G-orbit, and so there are at most two G- 
orbits of vertices of v~lency >_ 3. 

(e) For a vertex u o/va/ency 2, Gu is boundary-transitive iff T is a subdivision of 

a regular tree, u bisects the segment [z, y] above, and G is transitive on vertices 

with valency > 2. 

Proo£: (a) As in the previous proposition, for all z E T, Gz  N nT  -- fiT, and 

therefore Gz intersects every connected component of T \ F, F finite. We now 

use an argument of Soardi and Woess [3]: let e ~- ( z ,  y}  and delete the edge e 

from T, separating T into two connected components D1 and/)2  both infinite, 

since T is reduced. Take g E G s.t. ge n ¢ -- ~ sad ge c D1, and then e c g]~ 

where / )  ~- D1 or D2. Nowg/)* c T \ e ,  so g/)* C D1 o rD2 .  I f / ) * - ~  D1, 

then g(e U DI) c D1 since g(e U D1) is a connected subset of T \ e intersecting 

D1. Otherwise /)* ~- D2 ~nd we can assume gD2 c DI.  Take h E G with 
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h e A e  ---- ~b and he c D2. Again either h(eU1)2) c D2, or hD1 c D2, and 
using g(D2U~) C D1 we get hg(D2Ue) c hD~ c D2. In any case we get a 
translation in G, since an automorphism g with g(D U e) c D has an infinite 

orbit and therefore all its orbits are infinite so rain d(z, gz) > 0. 

(b) Suppose Zo E T, valency (z0) _> 3, and let zo belong to the translation axis 

l of g E G, whose endpoints we denote by ~+ -- limn gnzo and co_ -- limn g-nzo- 

Gx0 has Ro cosets in G, and finitely many orbits on fiT, as in the previous 

proposition. It follows that  there exists a vertex z E l, s.t. the endpoint of 

any geodesic starting at Zo and passing through z can be mapped to c~+ by an 

automorphism fixing zo: WLOG z -- g'~zo for some n _> 0. It follows that  it 

is possible to fix a segment on l of the form [gkz0, gk+'~zo], k E Z, and permute 

the neighbours of its right endpoint not on the segment. For some n' _> 0, it 

is possible to fix s segment of the form [g~-n'zo, gkz0], k E l ,  and permute the 

neighbours of its left endpoint not on the segment. Taking first k -- - n  and then 

k -- n' and using the fact that  the valency of z0 is a least 3, we see that  these 

sets of neighbours intersect. Consequently, Gz0 is transitive on the neighbours 

of z0. 

Now let w ~ w+ be an end. We can assume the geodesic from z0 to w is 

disjoint from [Z_l ,~_) .  g ' ~  belongs to the set of geodesics with initial segment 

[z0, g'~xo], and so for some k E Gffio,/Cgnw = w+ by transitivity of Gz0 on this 

set. k necessarily fixes g'~z0 and so for h = g-nkg,~ we have: hz0 -- x0 and 

h~ = w+ and the proposition follows. 
(c ÷ d) Let z ~ y be two vertices on l of valencies ~ 3 at minimal distance. 

The valency of vertices is constant on circles around z, and on circles around 
y, by the boundary transitivity of the stability groups. It follows that  circles 

of radius 2kd~ (z, y) around z consist of vertices of valency equal to that  of z, 

those of radius (2k + 1)dT(z,y) around z consist of vertices of valency equal 

to that  of y, and the rest of the circles around x consist of vertices of valency 

2. It follows also that  the segment [z, y] intersects all the G-orbits in T, since 

any point can be brought to the segment by repeated use of rotations around 

vertices of valency equal to that  of z or y. Consequently T is a subdivision of 

a biregular tree, and G has at most 2 orbits of vertices whose valency is greater 

than 2. It follows that  the stability group of any vertex of valency at least 3 is 

boundary-transitive. 

(e) Clearly if valency (u) = 2 and Gu is boundary-transitive, then T is a 

subdivision of a regular tree, u bisects the segment [x, y] connecting its two 

closest neighbours of valency > 2 and G is transitive on vertices of valency > 2. 

Conversely, Gu is boundary-transitive in that  situation: Consider a segment 
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[z, y] B u, and g E G with gz = y. If g has a fixed point at equal distances from 

z and y then u is also a fixed point and we are done. g cannot have a fixed 

point z closer to z than to y or vice versa, so the only other possibility is that  

g is translation along a geodesic l containing [z, y]. Rotating z to z ' ,  around y, 

where z '  E l and d(z,y) = d(y ,z ' )  and composing with g - l ,  we get a map fixing 

and interchanging x, y. So G ,  is boundary-transitive. 

Remarks: (1) In [3] there is a construction of a graph with infinitely many ends 

and a non-compact vertex transitive group of automorphisms with exactly two 

orbits on the boundary, one of which is a single point. It is also easy to construct 

a tree with a non-compact group of automorphisms with two orbits on f~r one 

of which is a two point set: Let To be a rooted tree with Aut(T0) transitive 

on ~r0,  and from each point n E 7 construct a copy T~0 of To with n as a 

root.  These examples show that  it is impossible to weaken the assumption of 

boundary-transi t ivi ty to the existence of finitely many orbits on the boundary, 

not even for trees, and not even assuming vertex transitivity of the graph. 

(2) The assumption that G -- Aut(X) is non-compact and has finitely many 

closed orbits in fi x (or equivalently that all the G-orbits in fix are open) is 

easily seen to yield the conclusion that X is boundary transitive, as follows: 

Let Gx be the set of limit points of Gx in %'/. If Gx ~ fl it is a proper open 

invariant set as well as its complement fi \ Gx. Gx and Gy are either identical 

or disjoint, so take point y E X so that  Gy C f~ \ Gz. Let d = d(Gx, Gy) and 
D = {z E Gyid(z, Gz) = d}. Then D is G -  invariant and clearly finite, since 

any limit point of D in f~ will belong to Gz n Gy. Since G is non-compact, we 

must have Gz = fi, so if w E Gx then Gw intersects all the orbits of G in fi - -  

all orbits are open - -  and therefore G~ -- f/. 

(3) If for a tree T, G : Aut(T)  is non-compact and has finitely many or- 

bits of vertices, then T is boundary transitive iff T / G  is a (degenerate or non- 

degenerate) segment or a circle, in which all points correspond to vertices of 

valency 2, except one point on the circle or the two end points of the segment. 

The ' if '  part  follows from the fact that  a maximal tree in T / G  has a lift which is 

a fundamental  domain of G in T and all the points in the lifted segment except 

the two endpoints have valency 2. The 'only if' part  follows from Proposition 3. 

(4) Assuming T / G  is finite, it follows that  if G has more than one orbit in n ,  

it has 2 s° . There are two cases to consider: If T / G  has a vertex of valency >_ 3, 

then decomposing the vertices of T to types according to the orbit to which they 

belong, there exists a vertex v of type 0, with three neighbours having different 

types 1,2,3. If a geodesic intersects Gv in an infinite set then at each point in 
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the intersection a choice is made as to the type of the next vertex. Consider 

C = {1, 2, 3) N , let S be the shift: (Sc¢)i = (~/+,) for ry = (c~i) E C, and call 

~, ~ shift-equivalent iff Sn~, = Stuff for some n and m. Given such a geodesic l, 

define a sequence ~e as the sequence of types of those vertices in {1, 2, 3} which 

follow a vertex of type 0 on l. Call such a sequence admissible. Clearly there 

are 2 tt° admissible sequences, since bt0 choices axe made. For each admissible c~, 

define fin = {col the sequence c*e obtained from a geodesic ~ converging to co is 

shift equivalent to ~}. fi~ is G invariant, and disjoint from fib if ~ and fl are 

not shift equivalent. 

In the other case T/G is a segment or a circle and we can assume WLOG that  

all points correspond to vertices of valency _> 3, and that  there are at ]east three 

points in T/G. One of them will be connected to two of the others, call it type 

2, and it is easily seen that  as we go along a geodesic (intersecting the orbit of 

type 2 in an infinite set) there are ~0 choices to be made about whether the next 

vertex will be of type 1 or type 3. As in the previous case it follows that  there 

are 2 ~° G-orbits on the boundary. 

4. We now describe the structure of X using the associated biregular tree T. 

Recall that  9~(G) is transitive on fiT, and that  for any s E T, 9~(G), is transitive 
on the neighbours of s in T, and denote K,  = @-I(~(G),) .  Define for each 

D E £ a set of vertices in V, v(D) = D \ UA..~DA = the set of vertices in D 

not contained in any subset of D of index one. We then have: 

PROPOSITION 4: (1) v(D) is 6nite. 
(2) v(D) = n{Als(D) = s(A)) and consequently v(D) depends on s(D) only. 
( 3 ) / f s ( D l )  and s(D2) are two distinct vertices o fT ,  then v(DI) and v(D2) are 

disjoint. 
(4) gocv ) l e a w  invari -t. 

Proof: (1) Consider D n f ix .  Looking at T, and using the homeomorphism )~, 

we see that  D N f ix  = UA.~DA n f ix .  Therefore D \ UA~DA is closed and has 

empty intersection with f ix ,  so it is finite. 

(2) Let valency s (9)  = n __ 2 and then we have D = v(D) U U~= zn-z,4i (see 

Fig. 1), and this union is disjoint, since distinct subsets of index one in D are 

disjoint (as was seen in step 2 in the proof of Proposition 2). Now decompose 
• - - 1  , A~ = v(A~) U D* U uy=2 A~ which is again a disjoint decomposition. A1 is a 

subset of D disjoint from v(D), so v(D) c A~. By definition v(D) ___ v(A~) and 
reversing the argument gives an equality, for any A with s(A) -- s(D), and so 

v(D) = n{AIs(A ) = s(D)}. 
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(3) If s(D1) ~t 8(D2) in T, and there is a directed path in T containing both 

edges, D2 following D1, then by definition D1 is a subset of an index one subset 

of D2, so DIAV(D2) : 4 and in particular v(D,)Av(D2) = 4. Otherwise D1 and 

D2 have incompatible orientations - -  there is no directed path  containing both  

and then by definition D1 c D~ so again D1Nv(D2) = 4 and v(D1) Nv{D2) = 4. 
(4) The group ~o{G)0(D) permutes the edges going out of s(D) and therefore 

Ks(D) permutes the sets occurring in the decomposition of part  {1) leaving v(D) 
invariant since A -< B ¢~ kA -~ kB, so the image of a point not belonging to any 

subset of index one has the same property. 

PROPOSITION 5: 

empty. 

(2) The sets v(D), 

to finite sets. 

(3) The partition IS 
most two G - orbits. 

(1) For D e C, at leazt one o[ the sets uCD), v(D*) is non- 

D E ~, constitute a partition of the set V of vertices of X 

G-tnvariant, and the fami/y {v(D)]D ~ ~} consists of at 

Proo£" (I) If v(D) = v(D*) = 4 then D = UA~DA, D* = UB~D.B (see Fig. 

1). Any vertex v G D will satisfy v E A for some A -< D. But A is a G 

translate of either D or D*, so A is also the union of its index one subsets, so 

E A ~ -< A -< D, etc. It follows that  v belongs to the intersection of a decreasing 

sequence of narrow cuts, contrary to Theorem 2. 

(2) We saw above that  for D1 ~ D2 the sets v(D1) and v(D2) are disjoint. 

The collection (v(D)[D E e} covers V, since given v E V, v E D or v E D* 

and so belongs either to a subset of index one or to v(D) or v(D*). If v belongs 

to a subset of index one - -  decompose this subset to its subsets of index one, 

etc. and by the same argument as in (1) - -  after finitely many steps a set A is 

found s.t. v G v(A). 

(3) The parti t ion induces the equivalence relation v N to ¢~ 3A s.t. v, to E 

v(A), and since v(gA) = gv(A){A -< B ¢~ gA -< gB) it follows v ... to O gv .~ gto, 

so ,,, is a G-invariant equivalence relation. []  

We note tha t  the set {v(C)[C e e} is in 1-1  correspondence with the vertices 

of T, provided v(D) ~ 4 ~ v(D*), given by r : v(A) ~ s(A) (which is well 

defined and injective by Proposition 4). If only one of the sets is non-empty, 

say v(D) ~ 4, then the same map will have as its image the set of vertices in 

T at even distance from s(D). The map r then describes V(X)  as a cover of 

V(T),  s.t. the fiber over each vertex s E T is finite, and since r is obviously G 
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equivariant and G has at most two orbits of vertices in T by Proposition 3 (d), 

each fiber is mapped (by some element of G) isomorphically onto either u(D) = 

the fiber over s(D) or u(D*) = the fiber over s(D*), one of which may be empty. 

In general, r does not map neighbours in X to neighbours in T, but  we can use 

r to define the depth of edges e = (u, t0) in X, by d(e) = d~( r (u) , r (w))  = the 

distance in T between ~-(~) and T(t0). Clearly d(e) = 0 itr • connects two vertices 

in the same set u(D) for some D, and d(e) = k + 1 itT e has one vertex in a set 

D and the other in a subset of index k in D* (where we define for consistency 

that  u(D) c D is the subset of D of index 0). Obviously, d is a G - invariant 

function. 

5. To construct the tree T, it was necessary to choose a narrow cut. We now 

show: 

PROPOSITION 6: The trse T is determlrned by X and does not depend on the 

choice of t]~e narrow cut used to de6ne it. 

For the proof we need the following: 

PROPOSITION 7: Let H C Aut (T)  be a dosed non-compact boundary tran- 
sitive subgroup, where T is a biregular tree. Let e = {s, t} be an edge of T. 

Then 

(1) The group lie is transitive on the set of  neighbours of  s other than t, and 

therefore l i .  is doubly transitive on the set of  neighbours of s. 

(2) lie is a maximal subgroup of H, and any two such are conjugate. Conse- 
quently the valency of s is the index of  a maximal subgroup of  the stabilizer of 

s in l i .  

Proof: (1) We can assume that  the valency of s is at least 3, otherwise there is 

nothing to prove. Consider a geodesic containing e, as in Fig 2. He has open 

orbits on the boundary and consequently for some n, He is transitive on the set 

of neighbours of 8n other than an - l ,  and we can assume So and sn to be in 

the same H orbit (H  has at most two orbits by Proposition 3) and then H , .  is 

conjugate to H,  o. Now H[,0,.] is transitive on the outer neighbours of s,~, and 

so by transitivity of H ,  o on the circle of radius n around so, the stabilizer of a 

radius of length n is transitive on the outer neighbours of its endpoint, and this 

is true for the conjugate group H . .  too. So Hi,. ,0] c He is transitive on the 

neighbours of so except s l ,  and in particular H .  is doubly transitive. 

(2) If a group G is doubly transitive on a set E,  [E[ _~ 3 then there is no 

domain of imprimitivity, i.e. a proper subset Y with at least two elements 
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. . . .  

Fig. 2. 

satisfying gY n Y = ~ or gY = Y for all g E G, since if a ~ b are in Y and 

c G E \ Y t h e n g ( a , b ) = ( a , c ) f o r s o m e g s o a E g Y N Y ~ 4 ,  but  a l s o g Y ~ Y  

since c E gY \ Y .  If there are no domains of imprimitivity then stabilizers of 

elements in E are maximal subgroups: If H satisfies Ge C H C G then H .  e = Y 

has IYI --- 2 and Y c E,  otherwise each g G G is congruent to some h E H 

modulo G~ c H so G = H,  and finally gY n Y ~ ~ implies ghle = h2e for some 

hlj  h2 E H so h~Xght E Ge c H and g E H in which case gY = Y .  [] 

Proo£ of Proposition 6: Let D ~ be another narrow cut, mud associate with (X, D t) 
the tree T t, the representation ~o t : G --* Aut(T ~) and the boundary map A t : 

fiT' ~ fix- If N is the kernel of the action of G on nx, then io(G) ~ G/N 
~d(G). This isomorphism follows immediately from the fact that the action of 

Aut(T) on nT is faithful: no non trivial element acts as the identity, if InTl > 2. 

G = G/N acts on T and T ~ via io and ~d, and the composition AoA t : fiT' ~ nr 

gives a ~ equivariant homeomorphism on the boundary. Let s t E ~r~ be a vertex 

of valency ~ 3, and consider ~d(G),,, which is a compact subgroup transitive on 

fiT' (by Proposition 3) having no inversions and consequently in its action on 

T it stabilises a vertex s, and has to coincide with its stabilizer in io(G) since 

any proper subgroup of ~o(G)o stabilmes an edge, by Proposition 7, and cannot 

be transitive on the boundary. So the valencies of s and s t are both equM to 

the index of a maximal subgroup of io(G), = lot(G)°,. By the same argument, if 
there exists a vertex with another valency in one of the trees, then there is one 

in the other tree too, and the valencies are equal. [] 

6. Since the associated tree does not depend on the choice of the narrow cut we 

can define it to be the tree type of X,  denoted Tree(X).  It is natural  to inquire 

how far is X from its tree type Tx  and how far is G from a subgroup of Ant (T) .  
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PROPOSITION 8: (I) Ker io = the kernel of the action Of G on f i r / s  a compact 
group which is locally 6nite with 6hire exponent. 

(2) The number of orbits of G in X is equal to the number of orbits of Gw(D) 
in v(D) plus the number of orbits of  G,(D.) in v(D*), i f  tbexe is no inversion 
s a t ~ h g  ~(D) = D*, and ot~erwi~, t~e number of orbits of ~.(~) h ,,(D). 

Proof: (1) Aut(r) is faithful on f i r ,  and therefore Kerlo is the kernel of the 

action of G on nx ~ fl~r. Ker~ acts trivially on T, and by equivariance of 

r :  V(X)  ~ V(T) stabilizes each v(C), C • 2, and is therefore compact, since 

X is locally finite. If we denote by H(C) the group of permutations induced by 

N = Kerlo on v(C) then the map ~ :  N --* I IcecH(C) by n ~-* {n[,(c)]C • £} 
is a monomorphism, since {v(C)IC • £} is a partition of Y. Each H(C) is 
isomorphic either to H(D) or to H(D*) and so N c IIcez H(C) is locally finite 

of finite exponent. 

(2) Let Gu(D) have a orbits in v(D), Gu(D. ) have b orbits in v(D*). It is then 

possible to color the vertices of X in a+b colors G-invariaJatly, by defining first on 

v (D) :  c(v) = c(t0) O v • G,(z>-).w and on v(D ' )  : c(v) = c(t0) o v • G , ( v . ) . w  

and then: c(gv) ~ c(v), for v • v(D) U ~(D*), g • G. The function c is 

well defined, provided there are no inversions satisfying or(D) -- D* since if 

v • v(D)Uv(D*), g • G then hv = gv ~e~ h • gO, but G,  c Io-x(~o(G)~(,)) = 

Gu(D) or Ge(D*). By definition, c is G-invariant. The argument for the case an 

inversion exists is analogous. 

Note that  for each color I ~ i ~ a + b the set of vertices ~ = {vlc(v ) = i)  
is a G orbit~ and r restricts to an equivarlant map ri : V / ~  T whose image is 

a ~o(G)-orbit of vertices in T, and r~ also satisfies that  the stabil~er in G of the 

vertex ,,(v) is transitive on the fiber r~1(,,(v)). 

7. Some Remarks and Corollaries 

(a) The maps r and A are compatible in the following sense: 

PROPOSITION 9: / f  zn • X, zn -'~ w • nX ~hen 'r(zn) -* A(w). 

Proof- We note that  by construction of T, given a narrow cut A with ~(A) 

~, there is an edge of T associated with A, and r(A) is the set of vertices of 

~ ( C ) - , ( A ) ,  w h i ~  belong to an anti-d~ected ~ w h o ~  f ~ t  edge is A (and 
~ t  v ~ e ~  t(A)), r h ~  foUows since A = O{~(D)ID • ~,Z> c A}. If { ~ } , ~ 1  
is the sequence of edges on an anti-directed geodesic converging to A(~), then 

- -  O O  {Ai)i=l is a decreasing sequence of neighbourhoods of 0J, and oo -. n~=l~ = (~). 
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r(A~) is a decreasing sequence of neighbourhoods of A(w) by the above and the 
proposition follows. [] 

(b) Given two finite graphs X1 and X2 that are vertex-transitive (i.e. Aut(X~) 
is transitive on V(X~)), their free product X = X~ * X2 is the graph obtained 

by connecting countably many copies of X1 and X2, to form a connected graph, 
in which every vertex is the intersection of exactly one copy of X1 and one copy 

of X2, and the only simple circuits in X are those contained entirely in some 

copy of X~ or X2. For example, the Cayley graph of Zn * Z,~ (Zn = Z/nZ) 
w.r.t, the generators (Z~ u Zm) \ (0} is the free product of two complete graphs 

on n and rn vertices (without loops). This graph is easily seen to be boundary- 

transitive, which also follows from the fact that it is the dual graph (see the next 

section) of a biregular tree T~,m. In general the automorphism group of such 

free products has 'large' (= uncountable) compact subgroups and it is natural to 
inquire whether they provide examples of boundary-transitive graphs. We have: 

PROPOSITION 10: X1 * X2 is boundary-transitive iff X1 sad X2 are complete 

S~aphs on [V(Xdl and IV(X~)l vertices. 

Proof: Suppose X = X1 * X2 is boundary-transitive. X is clearly vertex tran- 
sitive, and the set of edges incident to a vertex falls naturally into two sets 

according to the type of subgraph to which they belong. To construct the Dun- 

woody tree, we need to choose a G -- Aut(X) orbit of narrow cuts. If the 

valency of a vertex in X2 is smaller than the valency of a vertex in X1 we have 

to choose D, D* as shown in Fig. 3, and if they are equal, there is another choice 
DI = D \ v,D~. 

One of the choices D or D1 will satisfy the conclusion of Dunwoody's Theorem 

1, and we label this choice by D, and we can assume that ~D consists of one 
vertex-labeled v, by going over to D* if necessary. Since X~ is vertex-transitive, 

Gx, is transitive on the vertices of Xi, and therefore the subgraph X1 is the 
fiber under r of a single vertex of T - -  the Dunwoody tree. The image under T 

of V(X) is the Aut(T) - orbit of this vertex, since the decomposition of V(X) to 

subgraphs of type X1 is a G - invariant partition. By Proposition 7, ~o(G)T(x~) 
is doubly transitive on the tree neighbours, and it follows immediately that Gxx 
and therefore Aut(Xl) is doubly transitive on V(X1), which implies that V(X1) 
is a complete graph. Now the stabilizer in Io(G) of a vertex of T in the other 

~(G)-orbit of vertices acts doubly transitively on the tree neighbours, so it acts 

doubly transitively on D and the index one subsets of D*. This clearly implies 

that Aut(X2) is doubly transitive on X2 so it too is a complete graph. [] 



16 A. NEVO Isr. J. Math.  

w 

× 

D 

Fig. 3. 

Remark :  Suppose X~, 1 _~ i _~ k are vertex transitive graphs, [X~] >_ 2. 

An argument similar to the one in Remark 4 in section 3 above shows that  if 

X -- X1 * X2 * - "  * Xk, k _~ 2 is boundary-transitive, then IX~I can take 

either two values, in which case k -- 2 and X is a free product  of two complete 

graphs, or IX~I -~ n is constant, and then an argument similar to the one in the 

Proposition 9 shows that  each X~ is a complete graph on n vertices. 

8. C o n s t r u c t i o n  o f  G r a p h s  

Let B denote the class of locally finite graphs X with infinitely many ends and a 

non compact group of automorphisms G transitive on the boundary. B is stable 

under the following operations: 

(I) Add a G orbit  of vertices of valency 2, i.e., choose a G-orbit of edges and 

add a vertex ~in the middle s of each edge. 

(2) For each G - orbit of vertices choose a finite graph with a preferred vertex 

and append a copy of it to the vertices in the chosen orbit. 

More form~lly, if 01 , . . . ,0v  are the G orbits in X and F x , . . . , F r  are finite 

graphs with preferred vertices 9 1 , . . . ,  ar define 

P 

v ( x ' )  = u × 
i=1 
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and ( (~ ,a) , (~ ,b) )  • E(X') • (=,~) • g(X) and a,b • { ~ 1 , . . . , = , }  or ~ = 
(say u • e~) and (a, b) E E(F~). X '  is obviously connected, and G acts on X '  by 

g(=, a) ~ (g~, ~). 
Clearly, if Hi = StAut(F,)(a~) then the group H~' = II~ee, H~ injects into 

Aut(X'}. 

(3) Multiply by a finite graph F (which may have loops), i.e. take 

v(r)  = v(x) × V(F), 

((u,a),(v,b)) • E(X') ¢~ (u,v) • E(X) and (a,b) • E(F) ,  with G action 
g(,,, a) = (g=, a), 

(4) If (v,w) • V x V add the G orbit {(gu, gw)Ig • G} to the set of edges 
of X. In particular the set Ue = {(v, w)ldx (v, w) = l} is a finite union of G -  

orbits of pairs, and so for any finite sequence of lengths ~ > 2, I < i < r, it is 

possible to connect by new edges the vertices at distance ~ apart. The G action 

extends in a natural way. 

(5) Delete a G-orbit of edges, provided the remaining graph is still connected. 

As an example, connect in T3 vertices at distance 2 and 3 and delete the original 

edges. 

(6) Join two graphs with isomorphic associated trees. If Tree(Xi) -- T take 

where ~ : G~ --, Aut(T) are the representations constructed above which we 

assume here to be faithful, and H a closed non-compact subgroup of ARt(T) 

which is transitive on fiT; then take 

v ( x ' )  = v ,  u v2, E(X') = E(Xl )  u E(X2) u E 

where E is a set of edges, which consists of the H orbit of a new edge connecting 

a vertex in VI to a vertex in V2 (in order to make X'  connected) and where H 

acts on Vl uV2 by h .~, = ~-l(h)v,. 
(7) Pass to the quotient graph X / N  obtained as the space of orbits of the 

action of a compact normai group N c G, if such exists. 

(8) Pass from X to X* = the dual of X, which has E(X) as a set of vertices, 

and for (~ , / )  e E(X) × E(X), (~,f) coustitntes an edge in E(X*) m e,! have = 
common vertex in X. X* is a connected graph if X is, ARt(X) acts on X*, and 

there is a natural  equivariant identification of fi X and fix* which comes from 

the fact that  the sets of components {CF[ IF] < co, F C X} and {CF[ IF[ < 
co, F c X*} are mutually cofinal in one another. 
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Example: Tn, m = Zn * Zm ~ the free product of two complete graphs on n and 
m vertices (with no loops). 

(9) Let X be a compact two-dimensional simplicial complex, and Xx the 1- 

skeleton of X. Let )~ be the universal cover of X, and Xx the 1-skeleton of the 
N 

two-dimensional simpllcial complex X. Xx covers Xx under the covering map 
p : X -* X. Suppose r = I Ix (x  , z0) ~ Fr = The free group on r generators. 
P acts naturally on )~x, and fixing Zo with p(~o) = zo, construct a Dirichlet 
fundamental  domain w.r.t. Zo using the edge path metric dRx = d: 

D( io)  = {i ld( io,  ~-) < d(io,~i),V~t • 1"} and/ ) (go)  = { i l d ( i , D( io ) )  < 1}. 

D(~0) contains the 2r points closest to ~-0 in its F - orbit, i~ = ~ i o  and {~i}i=12r = 

S is a symmetric set of generators for F. Figure 4 shows that  )~x is sometimes 
boundary-transitive. 

Fig. 4. X = the universal cover of [0, 1] x figure S. 

Remarks: (1) It is natural  to expect that  )~1 is boundary-transitive iff the group 

AutD(~o)i0 (graph automorphisms of D(~0) fixing ~0) is doubly transitive on 
the set S. 

(2) In all the examples above, the representation ~ : Aut(X) --* Aut(T) has full 

image; i.e. [Aut(T) : imp] _< 2. It is easy to see that  each of the constructions (1) 



Vol. 75, 1 9 9 1  BOUNDARY-TRANSITIVE GRAPHS 19 

- (8) (except 6) described above yields a graph X'  with imAut(X ~) D imAut(X). 

It is unknown, however, whether the index of im~o will be _< 2 for all boundary 

transitive graphs, or whether it is possible to obtain non-open subgroups of 

Aut(T) (such as PSL2(Qp), for example) as the image of the full automorphism 
group of a boundary-transitive graph. 

Acknowledgemen t s  
The results of this paper are part of a doctoral dissertation written under the 

supervision of Professor H. Farstenberg and submitted to the Hebrew Univer- 

sity of Jerusalem. The author wishes to thank Professor Farstenberg, Professor 

Alex Lubotzky and $hahar Mozes for their interest, encouragement and valuable 

assistance. 

The author has been informed by the referee that similar results have been 

independently obtained by R. G. M6ller, and will be published in a forthcoming 

issue of the Mathematical Proceedings of the Cambridge Philosophical Society. 

]~e~P.,I*P_UC e8  

1. M. J. Dunwoody, Accessibility and groups ofcohomological dimension One, Prec. 
London Math. Soc. (3) $8 (1979), 193-215. 

2. M. J. Dunwoody, Cutting up graphs, Combinatorlca 2 (I) (1982), 15-23. 

3. P. M. Soardi and W. Woess, Amenability, unimodularity and the spectral radius 
of random walks on infinite graphs, preprint. 

4. J. R. Stallingr, Group theory and three dimensional manifolds, Yale Mathematical 

Monographs, Yale University Press, 1971. 

5. W. Woeu, Boundar/ee of random ~ on graphs and group~ with infinitely many 

ends, Isr. J. Math. 68(1989), 271-301. 


